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ABSTRACT
The Art Gallery Problem asks to find a minimum subset
of vertices in a polygon that are sufficient to observe the
interior. This problem arises in a variety of multiagent sys-
tems, including robotics, sensor networks, wireless network-
ing, and surveillance. Despite the fact that the centralized
version of the problem has been extensively studied for the
past thirty years, there is relatively little in the literature
describing distributed solutions to the problem that have
desirable guarantees in both runtime and optimality. We
propose and analyze a new distributed algorithm for ap-
proximating a solution to this problem and a number of
its variants that runs in a linear number of communication
rounds with respect to the number of nodes (independent
of the topology of the network), and, under assumptions on
the embedding of the edge weights, will run in a logarith-
mic number of communication rounds producing solutions
within a constant factor of optimal.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems; G.1.2
[General]: Approximation

General Terms
Algorithms, Theory

Keywords
Distributed Problem Solving, Art Gallery Problem, Domi-
nating Set Problem, Multi-Robot Coordination, Sensor Net-
works, Primal/Dual

1. INTRODUCTION
Art gallery problems generally ask to find the minimum

number of guards required to observe the interior of a poly-
gonal area [12]. Over the past thirty years since their propo-
sition, these problems have been thoroughly studied by the
computational geometry community. Interest in art gallery

Cite as: Dominating Sets of Agents in Visibility Graphs: Distributed
Algorithms for Art Gallery Problems, Evan A. Sultanik, Ali Shokoufandeh,
and William C. Regli, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

problems has seen a recent resurgence given their applica-
tion to a number of areas of multiagent systems. For ex-
ample, many robotics, sensor network, wireless networking,
and surveillance problems can be mapped to variants of
the art gallery problem. Since such problems are naturally
distributed, a logical approach is to apply the multiagent
paradigm (i.e., each guard is an agent).

As a motivating scenario, consider a wireless sensor net-
work such as the one pictured in Figure 1. Since one goal of
the network is to maximize survivability, it may be desirable
to conserve battery power by having as few sensors active as
necessary, especially for sensors with wide overlapping fields
of view. The problem is then to find a minimum subset
of sensors that need to remain active in order to provide a
desirable level of coverage. As another scenario, consider a
group of mobile robots each equipped with a wireless access
point. The objective of the robots is to maximally cover an
area with the wireless network. As the robots are travel-
ing between waypoints, though, it is highly likely that there
will be a large amount of overlap in the coverage. There-
fore, in order to save power, the robots might want to choose
a maximum subset of robots that can lower their transmit
power while still retaining coverage. The difficulty in each
of these scenarios is for the agents to collectively find the
solution without relying on centralization of computation.
Centralization is infeasible either due to lack of resources
(i.e., no single agent has powerful enough hardware to solve
the global problem) or due to lack of time (i.e., centralizing
the problem will take at least a linear number of messaging
rounds). These problems are NP-complete and can be
modeled as art gallery problems.

Solving art gallery problems using multiagent systems is
not a new idea. We have previously applied the multiagent
coordination paradigm of Distributed Constraint Optimiza-
tion (DisCOP) to a variant of the problem in which a fixed
number of robotic guards must patrol a polygonal area [9].
The difficulty with using DisCOP, however, is that all known
algorithms that provide a constant bound on the quality of
the solution will in the worst case be exponential in either
messaging or memory [11]. Whereas DisCOP is a general
problem solving paradigm, Ganguli, et al., developed a mul-
tiagent algorithm specifically for solving art gallery prob-
lems [4]. This algorithm has several desirable properties
including optimality, however, there is no theoretical bound
on runtime.

The dominating set problem is a generalization of the art
gallery problem that asks to find a minimum subset of the
vertices in a graph such that every vertex not in the subset
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(a) An ad-hoc sensor network wirelessly
coordinating to optimize interior cover-
age.
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(b) Dynamically-generated orientation.

Figure 1: In (a), an ad-hoc sensor network must dis-
tributedly reorient. In (b), agents a1 and a4 rotate
to guard the interior.

has at least one member of the subset in its neighborhood.
This problem is also NP-complete. The dominating set
problem has been widely studied in the wireless network-
ing community given its applications to ad hoc routing [20].
The majority of the proposed distributed algorithms for the
dominating set problem, however, do not have bounds on
both runtime and solution quality. In the wireless network-
ing community much emphasis is placed devising algorithms
with a constant number of communication rounds. Ruan, et
al., propose a one-step greedy algorithm for approximating
a solution to the dominating set problem [15], however, the
performance ratio is a function of the degree distribution of
the graph. Kuhn and Wattenhofer provide a more general
result, producing an algorithm that has a variable approxi-
mation bound as a function of the number of communication
rounds executed. Kuhn and Wattenhofer’s approach, how-
ever, is likewise tied to the degree distribution of the graph.
Finally, Huang, et al., show that with a slightly higher mes-
sage complexity a solution no worse than 12 times the cost of
the optimal solution can be found [7]. This paper introduces
an algorithm based on the primal/dual schema that exhibits
a lower constant of approximation in worst case linear—but
often logarithmic—number of communication rounds.

Proposing distributed algorithms using the primal/dual
schema has been the subject of study of a number of recent
results [13]. Problems that have been studied using this
schema include Steiner problems [16], point-to-point con-
nectivity problems [2], distributed scheduling [14], vertex
cover [8, 6], and facility location [17]. To the best of the
authors knowledge, however, there is no prior result which
theoretically proves a constant bound on the cost of the op-
timal solution and bounds the number of communication
rounds sublinearly.

This paper introduces a novel distributed version of a mul-
tiagent approximation algorithm based on the primal/dual

(a) (b) (c)

Figure 2: An art gallery, (a), with its associated
visibility graph, (b), and an optimal placement of
guards, (c). Guard placement is represented by .

schema for solving the distributed art gallery and dominat-
ing set problems (§2). We show that this algorithm is correct
and complete and bound its runtime with respect to com-
munication rounds (§2.2). We then show through empirical
analysis that the algorithm will produce solutions within a
constant factor of optimal with high probability (§2.3). We
then show that some well known variants of the problem
can also be solved with the same algorithm and, under cer-
tain reasonable assumptions about the distribution of edge
weights, the algorithm will produce a solution no worse than
two times optimal (independent of the topology of the prob-
lem) (§3). Conclusions and future work are provided in §4.

2. DISTRIBUTED DOMINATING SETS
This section defines an algorithm for solving the distributed

dominating set problem, which is equivalent to the original
art gallery problem of finding a minimum set of vertices from
which the entire polygon is visible.

2.1 Problem Formalization
Given two vertices of a polygon u and v, u is said to be

visible from v if the line segment between them is contained
within the polygon, & vice versa. The exterior of the poly-
gon is forbidden for visibility graph edges. Given the vertices
of a polygon, V , the Art Gallery Problem asks to find a min-
imum subset of the vertices D ⊆ V such that for every v ∈ V
there is at least one d ∈ D that is visible. The visibility graph
of a polygon is constructed by adding an edge between all
pairs of vertices that are visible to each other. For example,
see Figure 2(b). The Art Gallery Problem therefore reduces
to finding a dominating set of the vertices in the polygon’s
visibility graph. Given a visibility graph G = 〈V, E〉, the
object is to find a D ⊆ V of minimum cardinality such that
each v /∈ D has at least one d ∈ D in its neighborhood.
An example is given in Figure 2, with an optimal solution
depicted in Figure 2(c).

The analysis of the dominating set problem can be simpli-
fied by representing it as a connectivity problem. Therefore,
let us augment the visibility graph with one special guard
vertex di for each original vertex vi. Next, add an edge from
each vertex to its associated guard vertex with a weight of
one. The new overall set of edges is the original set of edges
from the visibility graph unioned with the set of new guard
edges. All original edges from the visibility graph are given
a weight of zero. Let R = {v1, . . . , vn} be the set of original
vertices in the visibility graph and let T = {d1, . . . , dn} be
the set of new special guard vertices with the new overall
set of vertices V = R∪T . Now the problem reduces to that
of finding a minimum weight forest that spans R having the
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property that the length of the shortest path from any v ∈ R
to a d ∈ T is no more than two edges. We will hereafter refer
to this forest as “the spanning forest”. Note, however, that
the spanning forest does not necessarily span all of T .

In this new connectivity representation, a vertex vi will
be a part of D (i.e., it will be chosen to become a guard)
if the edge from it to its associated guard vertex is a part
of the final spanning forest: 〈vi, di〉 ∈ F =⇒ vi ∈ D. Let
g : 2V → {0, 1} be a function defining whether a connected
component S ⊆ V satisfies the requirement that each vertex
is close to at least one guard. g is defined such that g(S) = 1
if and only if there exists an original vertex in S that is not
within two edges distance of a guard in S: g(S) = 1 ⇐⇒
∃u ∈ S∩R ∀v ∈ S∩T : |u � v| > 2. A component for which
g(S) = 1 is said to be unguarded. The optimization problem
on the augmented graph can be captured as the following
integer program:

minimize
X
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ g(S), ∀S ⊂ V : S �= ∅
xe ∈ {0, 1}, ∀e ∈ E,

(IP)

where each variable xe is an indicator as to whether the
edge e is a member of the final spanning forest, δ(S) is the
set of edges having exactly one endpoint in S, and x(F ) �→P

e∈F xe. Therefore, any forest F ⊆ E will be a feasible
solution to the problem if g(S) = 0 for every connected com-
ponent S of the forest. Let (LP) denote the linear program-
ming relaxation of (IP) obtained by replacing the integrality
restriction with xe ≥ 0. The dual of (LP) is

maximize
X
S⊂V

g(S)yS

subject to: X
S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S �= ∅.

(D)

An edge is tight if w(e) =
P

S:e∈δ(S) yS . Let Z∗
LP be the

cost of the optimal solution to (LP) and let Z∗
IP be the cost

of the optimal solution to (IP). It is a folklore result that
Z∗

LP ≤ Z∗
IP.

2.2 The Algorithm
The basic mechanism of the algorithm is quite simple. We

start off with an empty forest; each vertex is a member of
its own connected component. Every round, each unguarded
component greedily chooses to add one of its cut edges in the
visibility graph to the forest, merging with the component
on the other end of the edge. If the new component becomes
guarded as a result of the merger then the new component
stops actively growing. This has the effect of first finding
a forest that spans the original visibility graph; then each
connected component in the forest finds the minimum set of
special vertices that is sufficient to be guarded. When all
components are guarded the algorithm terminates.

The remainder of this section provides the notation and
mathematics required to formally define and model the al-
gorithm. This will later be used to provide formal bounds
on the runtime and performance of the algorithm, and also
to prove correctness and completeness.

We assume that the communications network provides
guaranteed delivery of messages, however, there may be
arbitrary latency (i.e., the network is asynchronous [10]).
Without loss of generality, we assume that there is one in-
telligent agent per vertex in the graph. We further assume
that all agents are honest and correct and thus need not
consider the problem of Byzantine failure. The agents are
non-adversarial insofar as their primary goal is to find a
feasible solution to the art gallery problem. The collective
is therefore a cooperative multiagent system [18]. Agents’
perceptions of the visibility graph are consistent, possibly
through the use of a distributed consensus algorithm [10].
Each agent/vertex has a unique identifier with a globally
agreed ordering. This ordering can be used to construct a
total ordering over the edges (e.g., by combining the unique
identifiers of the incident vertices).

The proposed multiagent algorithm is round-based. The
rounds proceed asynchronously between connected compo-
nents. Therefore, as the connected components grow through-
out the execution of the algorithm, the rounds naturally be-
come synchronized.

Let Ft be the partially constructed spanning forest at
the beginning of round t. Let Ct be the set of connected
components in Ft. For sake of brevity and simplicity, let
μt : V → Ct be a function mapping vertices to their as-
sociated connected component during round t; therefore,
μt(v) �→ Ci =⇒ v ∈ Ci(∈ Ct). A vertex that is incident
to at least one edge in the cut of its connected component
is said to be in the fringe. Let bt : V → R be a mapping of
vertices to a real number during round t. These values rep-
resent the amount of slack remaining in the dual variables
associated with a vertex.

Let Jt : V × V → {0, 1} be a binary relation defining
which edges will become tight during round t. Each un-
guarded component will choose to add the edge in its fringe
that has minimal weight and dual variable slack. Therefore,
Jt(u, v) = 1 if and only if g(μt(u)) = 1 and

〈u, v〉 = arg min
〈i,j〉∈δ(μt(u))

w(〈i, j〉) − bt(i) − bt(j). (1)

Ties in the minimization are broken based upon the order-
ing of the edges. Let J+ denote the transitive closure of
J . Note that J does not commute: J(u, v) �=⇒ J(v, u).
Also note that as long as there exists a feasible solution
to (IP) then the minimization ensures that each unguarded
connected component must have exactly one edge in the
fringe that becomes tight each round: ∀C ∈ Ct : g(C) =P

〈u,v〉∈δ(C) Jt(u, v).
Ft is the partially constructed spanning forest during round

t, initialized to F0 = 〈V, ∅〉. The forest is updated each round
with the set of all edges that became tight during the round:
Ft+1 = Ft ∪ {〈u, v〉 ∈ E : Jt(u, v) ∨ Jt(v, u)}.

For a set S ⊆ V , let yS be the dual variable associated
with S. Initially all such variables are set to zero. Note that
in actuality these variables need not be made part of an
implementation of the algorithm; they exist solely for the
purpose of proving properties of the algorithm [5]. These
dual variables are implicitly updated as follows:

yS ←
(

w(〈i,j〉)−bt(i)−bt(j)
1+Jt(j,i)

if ∃i ∈ S ∈ Ct, j /∈ S : Jt(i, j),

0 otherwise.

(2)
The b values are initialized such that ∀v ∈ V : b0(v) = 0.

799



They are updated each round such that

bt+1(v) = bt(v) + yμt(v). (3)

The value bt(v) can therefore be interpreted as the amount
of slack remaining in the dual variables during round t before
an edge incident to vertex v becomes tight.

Let τ be the number of rounds required for the algorithm
to reach quiescence. Therefore, τ is the earliest round during
which there are no unguarded components:

τ = arg min
t∈N∗

(∀C ∈ Ct : g(C) = 0) . (4)

Algorithm 1 Message handlers for Algorithm 2.

1: procedure Handle-Update-Request-Message(UpdateRequest
sent by u)

2: Send-Message(Update〈v, b(v)〉) to u

3: procedure Handle-Update-Message(Update〈vu, bu〉 sent by u)
4: b(vu) ← bu

5: procedure Handle-Union-Message(Union〈eu〉 sent by u)
6: if e = eu then
7: Send-Message(Ack〈Mutual, C〉)
8: else if F is already guarded then
9: Send-Message(Ack〈Is-Guarded, ∅〉)
10: else
11: Send-Message(Ack〈Not-Mutual, ∅〉)
12: I ← I ∪ {u}
13: procedure Handle-Adding-Message(Adding〈ea, εa, Ca〉)
14: F ← F ∪ {ea}
15: b(v) ← b(v) + εa

16: C ← C ∪ Ca

The performance guarantees of the algorithm are proven
in this section. First, Lemmas 1 and 2 lead to Proposition 1
which implies that any solution found by the algorithm is
acyclic and thereby a forest, implying that it is primal fea-
sible. Proposition 2 states that under certain common con-
ditions the main loop (line 8 of Algorithm 2) will have a
logarithmic number of iterations. Finally, Claim 2 leads to
Proposition 3 which states any solution found by the algo-
rithm is dual feasible.

Lemma 1. Any cycle in the intersection graph1 of Ft+1

formed from Ct must consist solely of edges along the cuts
between unguarded components.

Proof. Assume, on the contrary, that there exists a cycle
containing an edge that is incident to at least one guarded
component. Let 〈u, v〉 be such an edge and assume μt(v) is
guarded. (1) implies that v’s connected component has no
outgoing edges,

∀i ∈ μt(v) : (¬∃j ∈ V : Jt(i, j)),

which contradicts the fact that 〈u, v〉 is in a cycle.

The potential cost of an edge is the fractional quantity
associated with ε on line 11 of Algorithm 2.

Lemma 2. Any cycle in the intersection graph of Ft+1

formed from Ct must consist of edges of equal potential cost.

1An intersection graph is formed from a family of sets C =
{C1, C2, C3, . . .} by creating one vertex vi for each set Ci and
connecting two vertices vi and vj by an edge whenever their
corresponding sets have a nonempty intersection, producing
the edge set {〈vi, vj〉 : μ(vi) ∩ μ(vj) �= ∅}.

Proof. Let e1 = 〈u1, v1〉 be an edge in a cycle. (1) im-
plies that all edges in a cycle must be cuts between existing
connected components. Therefore, μt(u1) �= μt(v1). Fur-
thermore, there must be another edge in the cycle, e2 =
〈u2, v2〉, such that μt(v2) = μt(u1). It must also be true
that Jt(u1, v1) = Jt(u2, v2) = J+

t (u1, v2) = 1. By Lemma 1
all components in the cycle are unguarded. Therefore, ap-
plying (1) gives

w(e1) − bt(u1) − bt(v1) ≤ w(e2) − bt(u2) − bt(v2).

In general, this inequality will hold for the incoming and
outgoing edges of any connected component in the cycle.
Therefore, by transitivity,

w(e1) − bt(u1) − bt(v1) ≤ w(e2) − bt(u2) − bt(v2)

≤ w(e1) − bt(u1) − bt(v1),

implying that

w(e1) − bt(u1) − bt(v1) = w(e2) − bt(u2) − bt(v2).

Proposition 1. The intersection graph of Ft+1 formed
from Ct is acyclic.

Proof. Assume, on the contrary, that there is a round t
during which a cycle of length � is formed. Since the graph is
simple, � > 1. By Lemma 2, all of the edges in the cycle must
be of equal potential cost. Therefore, each connected com-
ponent will have had a tie between two fringe edges which
must have been broken using the edge ordering. Therefore,
either � = 1 or there are two edges with the same unique
identifier, both of which are contradictions.

Corollary 1. F0, . . . , Fτ are all acyclic.

Proof. Since F0 = 〈V, ∅〉, the base case is acyclic. In-
duction over Proposition 1 then proves the corollary.

It is easy to see that τ = the diameter of the visibility
graph = O(n) since every acyclic subgraph has O(n) edges
and the algorithm adds at least one edge per round. This
upper bound can in fact be tightened for many common
cases, which we shall now demonstrate. Let Af (t) = A(t)
be an upper bound on the number of unguarded components
at the beginning of round t. Similarly, let Lf (t) = L(t) be
an upper bound on the total number of components at the
beginning of round t. Clearly,

A(t) ≥ |{C ∈ Ct : g(C) = 1}|, and

L(t) ≥ |Ct| ≥ A(t).

In general, every unguarded component will union with an-
other component during each round. Regardless of whether
such a component chooses to union with a guarded or un-
guarded component, the total number of components will
decrease by one half the number of unguarded components.
Therefore L(t) = L(t− 1)−A(t− 1)/2. Now let us consider
the extrema for the change in the number of unguarded com-
ponents. If all unguarded components choose to union with
other unguarded components and all unions are pairwise,
then we have A(t) = A(t − 1)/2. On the other hand, if
as many unguarded components union with guarded com-
ponents as possible, then A(t) ≤ min(A(t − 1), L(t − 1) −
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Algorithm 2 The distributed art gallery/dominating set algorithm. Message handlers are defined in Algorithm 1.

1: procedure Distributed-Art-Gallery(v)
Require: v is the vertex associated with the location of this agent.
Ensure: v will become a guard if 〈v, dv〉 ∈ F .
2: C ← ∅ /* The other fringe vertices in our component. */
3: N ← δ({v}) ∪ {〈v, dv〉} /* The neighborhood of v along with the special guard vertex dv */
4: F ← ∅ /* The spanning forest of our component. */
5: for all i ∈ δ(C) ∪ {v} do
6: b(i) ← 0

7: I ← ∅
8: while F is unguarded do
9: Broadcast-Message(UpdateRequest) to all u ∈ N
10: Block until we have received and handled all Update messages from N .
11: Find an edge e = 〈v, u〉 ∈ N such that u /∈ C and ε = w(e) − b(v) − b(u) is minimized.
12: Broadcast-Message(Potential〈ε〉) to all c ∈ C
13: Listen for all broadcast Potential messages from the fringe
14: if ε is the smallest in the fringe and ties are broken in our favor then
15: N ← N − {u}
16: if u = dv then
17: Cm ← {u} /* v is to become a guard. */
18: else
19: Send-Message(Union〈e〉) to u
20: Wait for an Ack〈m, Cm〉 message from u
21: if m = Mutual then /* u also chose to make edge e tight */
22: ε ← ε

2
23: else
24: if m = Not-Mutual then /* this means u is not yet guarded */
25: Block until we have received and handled an Adding〈ea, εa, Ca〉 message from u

26: Cm ← Ca

27: Broadcast-Message(Adding〈e, ε, Cm〉) to all c ∈ C ∪ I
28: I ← ∅
29: C ← C ∪ Cm

30: b(v) ← b(v) + ε
31: F ← F ∪ {e}
32: else
33: Block until we have received and handled an Adding message from another fringe member

A(t − 1)). Therefore, assuming pairwise unions, the general
recurrences for A(t) and L(t) are:

A(t) = max

 
A(t − 1)

2
,

min
“
A(t − 1), L(t − 1) − A(t − 1)

”!
, (5)

L(t) = L(t − 1) − A(t − 1)

2
.

The initial conditions for the recurrences are clearly

A(0) = |{C ∈ C0 : g(C) = 1}| = |R|,
L(0) = |C0| = |R| + |T | = 2|R|.

Claim 1. A(t − 1)/2 will always dominate in the maxi-
mization in (5).

Validation of this claim will be given in the proof of the
following proposition.

Proposition 2. The algorithm will terminate after a log-
arithmic number of rounds if all component unions are pair-
wise (i.e., iterations of the main loop on line 8 of Algo-
rithm 2): τ = O(log n).

Proof. This follows from the fact that the algorithm will
terminate once the number of unguarded components is zero:

∀t ∈ N∗ : A(t) = 0 =⇒ t ≥ τ.

Therefore, the burden of this proof is to show that, the A(t)
recurrence will converge exponentially, implying that τ =
O(log n).

If Claim 1 holds, then it is clear that the A(t) recurrence
will converge exponentially:

A(t) =
A(0)

2t
,

L(t) = 2|R| −
tX

i=0

A(0)

2i
.

Let k = A(0)
2|R| and observe that k = 1

2
. Substituting 2k|R|

for A(0) ensures that the minimization in A(t) will always
evaluate to L(t − 1) − A(t − 1) because

∀t ∈ N∗ : A(t) ≥ L(t) − A(t).

2|R| k

2t
≥ 2|R|

 
1 −

 
tX

i=0

k

2i

!
− k

2t

!

2k

2t
≥ 1 −

tX
i=0

k

2i

k ≥ 2t

1 + 2t+1
,

which is true because 2t/(1 + 2t+1) is bounded above by 1
2
.

Therefore, provided Claim 1 holds, (5) can be simplified to

A(t) = max

„
A(t − 1)

2
, L(t − 1) − A(t − 1)

«
.

Claim 1 obviously holds for the base case of t = 1 because
A(0)/2 = 2k|R| is bounded below by L(0) − A(0) = 2|R| −
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2|R|
2

. Therefore, Claim 1 will hold as long as

A(t)

2
≥ L(t) − A(t).

This equates to

k ≥ 2t+1

 
1 −

 
tX

i=0

k

2i

!
− k

2t

!

≥ 2 × 4t

2t + 4t+1
,

which must be true because (2× 4t)/(2t + 4t+1) is bounded
above by 1

2
.

Claim 2. Let t′ be the round during which an edge e =
〈u, v〉 is added to the spanning forest. Then e will not be
in the cut of any component in a subsequent round: ∀t >
t′, C ∈ Ct : e /∈ δ(C).

Proof. μt′+1(u) = μt′+1(v) = μt′(u)∪μt′(v). Therefore,
in all rounds subsequent to t′ both endpoints of e are in the
same component and therefore cannot be in the fringe.

Proposition 3. The vector y is a feasible solution to (D)
and has the propertyX

e∈Fτ

w(e) ≤
X

e∈Fτ

X
S:e∈δ(S)

yS .

Proof. The fact that y is a feasible solution to (D) is a
straightforward result of the fact that y is initially zero and
is updated according to (2). Let t be the round during which
an edge e = 〈u, v〉 ∈ Fτ was added to the forest. From (3),
note that 

bt(u) =

t−1X
i=0

yμi(u)

!^ 
bt(v) =

t−1X
i=0

yμi(v)

!
.

Furthermore, at the beginning of round t the potential for
e is ε = w(e) − bt(u) − bt(v). Once e is added to Ft, the
dual variables yμt(u) and yμt(v) are updated according to (2).
Then there are three possible cases:

1. g(μt(u)) = g(μt(v)) = Jt(u, v) = Jt(v, u) = 1;

2. g(μt(u)) = g(μt(v)) = Jt(u, v) + Jt(v, u) = 1; or

3. g(μt(u)) + g(μt(v)) = 1.

In case 1,

yμt(u) + yμt(v) =
ε

1 + Jt(v, u)
+

ε

1 + Jt(u, v)
= ε,

implying that

w(e) =

tX
i=0

`
yμi(u) + yμi(v)

´
. (6)

For case 2, assume without loss of generality that Jt(u, v) =
1 and Jt(v, u) = 0. For case 3, assume without loss of gen-
erality that g(μt(u)) = 1 and g(μt(v)) = 1. Then for both
of these cases note that

yμt(u) =
ε

1 + Jt(v, u)
= ε,

implying that

w(e) = yμt(u) +

t−1X
i=0

`
yμi(u) + yμi(v)

´
. (7)

0

2

4

6

8

10

12

4 6 8 10 12 14 16 18 20 22 24

O
p
ti
m

a
li
ty

Number of Agents

Figure 3: Solution quality of the algorithm for art
gallery problems of various size. The x-axis is the
size of the polygon (i.e., the number of agents) and
the y-axis is the constant of approximation. Each
column is the distribution over 32 randomly gener-
ated polygons of a specific size. Boxes surround the
middle two quartiles. The mean of each distribution
is depicted as “ ”.

Claim 2 implies that the summations in (6) and (7) comprise
all sets that cut e, thus completing the proof.

2.3 Empirical Analysis
We have thus far proven that Algorithm 2 produces a

feasible solution to both (IP) and (D) in a linear—and often
logarithmic—number of rounds. It therefore only remains
to analyze the quality of the solution.

A series of n-gons were randomly generated by connecting
n uniformly distributed vertices in the unit square of the
Cartesian plane according to the“Two Peasants”method. 32
random polygons were created for each value of n. An agent
was instantiated at each vertex of each randomly generated
polygon and the algorithm run. The optimal dominating set
was also calculated.

Figure 3 presents the distribution of optimality as a func-
tion of polygon size. Y-axis values represent the constant
of approximation; lower values are better, with 1.0 being
the optimal solution. Boxes represent the second and third
quartiles of each distribution. The overall mean constant
of approximation is 3.13 with a standard deviation of 0.36.
Therefore, we can say with high probability that the algo-
rithm will produce a solution with a constant approximation
bound regardless of the problem size.

3. ART GALLERY VARIANTS
In this section we will show that some variants of the art

gallery problem can be solved using the same approach as
described above. In fact, some harder problems can be ap-
proximated with a constant theoretical bound on solution
quality. For example, one popular variant is what is dubbed
the “Treasury Problem” [3], in which treasures dispersed in
the polygon are what need to be guarded. As another vari-
ant, one might need to minimize the distance between a
guard and that which he or she is guarding (e.g., due to a
limited view distance of the sensor, or due to the mobility of
a robot). This variant is in fact equivalent to the treasury
problem in which each treasure has weighted importance [1].

In order to model this variant, we need only to embed the
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edge weights of the augmented graph into the proper metric
space. As long as all of the edges in the augmented graph are
weighted a metric space with a bijection in the range

ˆ
1, 3

2

˜
then we will show that the algorithm as defined above will
produce a solution that is no more than a factor of 2 − 2

|R|
away from optimal. This can easily be done by parameter-
izing the relative cost between covering a vertex/treasure
and the distance between a guard and a vertex/treasure. To
prove this claim, we use a technique of defining an invari-
ant over the weights of the edges added to the forest that
can ultimately be bounded by the average vertex degree of
the forest. The basic intuition of our result is that the av-
erage degree of a vertex in a forest of at most n vertices is
at most 2 − 2

n
. This technique is exactly the same as that

first used in a proof due to Goemans and Williamson in [5,
Theorem 3.6], in which they show that certain connectivity
problems can be sequentially 2-approximated in polynomial
time. Our result in fact generalizes that of Goemans and
Williamson by proving that, with a slight change to the po-
tential function (and thereby the invariant), the approxima-
tion guarantee can be maintained even if multiple edges are
added per round (allowing for parallelism/distribution).

Lemma 3 (Williamson, et al. [19, Theorem 3.6]).

Let H be the intersection graph of the final spanning forest
Fτ formed from Ct. Remove all isolated vertices in H that
correspond to components in Ct that are guarded. Then no
leaf in H corresponds to a guarded component.

Proof. This is a transcription of the proof, reproduced
here for completeness using our notation in the specific do-
main of art gallery problems. Assume the contrary: Let v
be a leaf, let Cv be its associated guarded component, let
e be the edge incident to v, and let C ⊆ V be the compo-
nent of F which contains Cv. Let N and C − N be the two
components formed by removing edge e from the edges of
component C. Without loss of generality, say that Cv ⊆ N .
The set N − Cv is partitioned by some of the components
of the current round; call these C1, . . . , Ck. Since vertex v
is a leaf, no edge in Fτ connects Cv to any Ci. Thus by the
construction of Fτ , ∀i ∈ {1, . . . , k} : Ci is guarded. Since Cv

is also guarded, it follows that N must be too. Clearly, if
two components S and B are both guarded and B ⊆ S, then
the component S −B must also be guarded. Since we know
that C is guarded then N −C must as well, and thus by the
construction of Fτ , e /∈ Fτ , which is a contradiction.

Proposition 4. The cost of the final spanning forest Fτ

is bounded above by

„
2 − 2

|R|

«
Z∗

IP.

Proof. Without loss of generality, assume yS > 0 =⇒
g(S) = 1. This property ensures that

P
S⊂V yS ≤ Z∗

LP.
Since it is clear that Z∗

LP ≤ Z∗
IP, we then haveX

S⊂V

yS ≤ Z∗
LP ≤ Z∗

IP.

Proposition 3 ensures that the weight of Fτ isX
e∈Fτ

w(e) ≤
X

e∈Fτ

X
S:e∈δ(S)

yS =
X
S⊂V

yS |Fτ ∩ δ(S)|.

To prove this theorem we will show by induction over the
construction of Fτ thatX

S⊂V

yS |Fτ ∩ δ(S)| ≤
„

2 − 2

|R|

« X
S⊂V

yS . (8)

The base case certainly holds at round zero since all yS are
initialized to zero. Let A be the set of edges added to the
spanning forest during an arbitrary round t. For each edge
e = 〈u, v〉 ∈ A, let εe denote the potential value associated
with that edge: εe = w(e) − bt(u) − bt(v). Now sort A
according to descending potential value, such that ei ∈ A is
edge with the ith largest potential. At the end of a round t,
the left-hand side of (8) will increase by at mostX

C∈Ct:g(C)=1

yC |Fτ ∩ δ(C)|

=
X

C∈Ct:g(C)=1

X
〈u,v〉∈A:u∈C

Jt(u, v)εe

1 + Jt(v, u)
|Fτ ∩ δ(C)|. (9)

If we can prove that this increase is bounded above by the
increase of the right-hand side, namely

„
2 − 2

|R|

« |A|X
i=1

εei × i, (10)

then we will be done.
First, observe that (9) can be bounded above by„
max
e∈A

εe

« X
C∈Ct:g(C)=1

X
〈u,v〉∈A:u∈C

Jt(u, v)|Fτ ∩ δ(C)|. (11)

Next, observe that (10) can be bounded below by„
min
e∈A

εe

«„
2 − 2

|R|

«„
|A|
2

+
1

2

«
|A|. (12)

Now let H be the intersection graph of the final spanning
forest Fτ formed from Ct. Remove all isolated vertices in H
that correspond to guarded components in Ct. Notice that
H is a forest, and by Lemma 3 no leaf in H corresponds to
a guarded component. Let Na be the set of vertices in H
that correspond to unguarded components:

Na = {C ∈ Ct : g(c) = 1},
and let Ni be the set of vertices in H corresponding to
guarded components. The degree of a vertex v in H corre-
sponding to component C, denoted dv, must be |{e ∈ δ(C) :
e ∈ Fτ}|. Then the summation of (11) can be rewritten asX

v∈Na

dv =
X

v∈Na∪Ni

dv −
X

v∈Ni

dv

≤ 2(|Na| + |Ni| − 1) − 2|Ni|
= (2|Na| − 2) .

This inequality holds since H is a forest with at most |Na|+
|Ni| − 1 edges, and since each vertex corresponding to a
guarded component has degree at least 2. Substituting this
result back into (11) we have

(9) ≤ (11) ≤
„

max
e∈A

εe

«
2(|{C ∈ Ct : g(C) = 1}| − 1)

≤
„

max
e∈A

εe

«„
2 − 2

|R|

«
|A|,

since the number of unguarded components is always no
more than |R|. Therefore, (9) ≤ (12) ≤ (10) if during every
round the following invariant holds:

max
e∈A

εe ≤
„
|A|
2

+
1

2

«
min
e∈A

εe,
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which is clearly true because all of the non-zero edge weights
are equal to one. Hence the theorem is proven.

Assuming all messages can be both unicast and broad-
cast in a constant number of messaging rounds then, by the
same argument as in the proof of 2, the main loop of the dis-
tributed algorithm on line 8 can run in a logarithmic number
of iterations and thereby will have a logarithmic number of
messaging rounds. If this assumption does not hold—for ex-
ample, if ad hoc routing is required—then the algorithm can
be trivially extended to support the Broadcast-Message

function itself. To do this, the algorithm will use the par-
tially constructed spanning trees within each connected com-
ponent for multicast.

The most expensive operations in the distributed algo-
rithm are (1) determining the fringe edge with minimal po-
tential; and (2) merging two connected components once an
edge between them becomes tight. Should efficient broad-
cast be unavailable, one way of implementing these opera-
tions is to have broadcast messages convergecasted up the
partially constructed spanning tree in the component. This
method was used to solve a similar problem in [16]. The
root of the tree (e.g., the vertex that was added the earli-
est and is of highest unique identifier) can then perform the
operation and unicast the result back down to the relevant
fringe member(s).

4. CONCLUSIONS AND FUTURE WORK
This paper has introduced a distributed algorithm for the

art gallery and dominating set problems that is guaranteed
to run in a number communication rounds on the order of
the diameter of the visibility graph. The algorithm produces
a solution whose cost is no worse than a constant factor of
optimal with high probability. For art gallery variants in
which the distances between guards and treasures/vertices
must also be minimized, the algorithm is proven to be a 2-
optimal approximation, provided that the edge weights are
embedded in the proper metric space. Ultimately, we have
furthered the results of Panconesi [13] by showing that the
primal/dual optimization scheme proposed by Goemans and
Williamson [5] can be successfully distributed into a multi-
agent algorithm with not only bounds on approximation,
but also on runtime. This suggests that other multiagent
coordination problems might yield to the same approach.
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